Closing Thurs: HW 9.6, 9.7(1)
Read HW hints in newsletter!!!!
Closing Tues: HW 9.7(2), 9.8, 9.9
Exam 1 is Thurs, Jan. 25 ${ }^{\text {th }}$ covers 9.4-9.9.
Derivative Rules: Sum, Coef. Rules and
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$.
$\frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$

Entry Task: Consider the function
$f(x)=\left(x^{3}-2 x+1\right)(3+5 x-6 \sqrt{x})$
a. Find $f^{\prime}(x)$.
b. Find the height at $x=1$.
c. Find the slope at $x=1$.
d. Give the equation of the tangent
line at $x=1$.

$$
f(x)=\left(x^{3}-2 x+1\right)(3+5 x-6 \sqrt{x})
$$

9.7 Chain Rule / Combining Rules

Generalized Power rule:

$$
\frac{d}{d x}\left((g(x))^{n}\right)=n(g(x))^{n-1} g^{\prime}(x)
$$

CHAIN RULE:

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Combining Rules

Step 0: Simplify and rewrite powers.

$$
\frac{1}{x^{r}}=x^{-r}, \sqrt[n]{x}=x^{1 / n}
$$

Step 1: Identify overall form
Sum: $\quad A+B$
Product: $\quad F \cdot S$
Quotient: $\frac{N}{D}$
Chain: $\quad(i n s i d e)^{n}$

Step 2: Apply rule.
As part of that rule, you likely will have to do more derivative. For those derivatives go to step 1.

Practice: Find the derivatives

Several of these are directly from HW!

1. $y=\frac{5 \sqrt{1-x^{3}}}{9}$
2. $y=\left(\frac{2 x-4}{x^{3}+1}\right)^{5}$
3. $y=\frac{5}{x^{3}}+6 x^{2} \sqrt{x^{5}+1}$
4. $y=\frac{7}{2\left(x^{4}+8\right)^{5}}-5 x+4$
5. $y=\left(t^{2}+4\right)^{5}\left(t^{3}-2\right)^{4}$

9.8 Second Derivative

The second derivative is the derivative of the derivative. We denote it

$$
f^{\prime \prime}(x) \text { or } \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}
$$

The second derivative represents the rate at which the rate of the original quantity is changing. (rate of change of rate of change)

We will interpret what this means more later, for now compute it.

Example:

$$
y=x^{3}+2 x
$$

Example: Suppose

$$
R(x)=70 x+0.4 x^{3}
$$

is the revenue (in dollars) if you sell x items? items.

1. What is the marginal revenue (denoted $M R$ or $\overline{M R}$) when you sell 100 items?
